Regulation of IL-17A responses in human airway smooth muscle cells by Oncostatin M
نویسندگان
چکیده
BACKGROUND Regulation of human airway smooth muscle cells (HASMC) by cytokines contributes to chemotactic factor levels and thus to inflammatory cell accumulation in lung diseases. Cytokines such as the gp130 family member Oncostatin M (OSM) can act synergistically with Th2 cytokines (IL-4 and IL-13) to modulate lung cells, however whether IL-17A responses by HASMC can be altered is not known. OBJECTIVE To determine the effects of recombinant OSM, or other gp130 cytokines (LIF, IL-31, and IL-6) in regulating HASMC responses to IL-17A, assessing MCP-1/CCL2 and IL-6 expression and cell signaling pathways. METHODS Cell responses of primary HASMC cultures were measured by the assessment of protein levels in supernatants (ELISA) and mRNA levels (qRT-PCR) in cell extracts. Activation of STAT, MAPK (p38) and Akt pathways were measured by immunoblot. Pharmacological agents were used to assess the effects of inhibition of these pathways. RESULTS OSM but not LIF, IL-31 or IL-6 could induce detectable responses in HASMC, elevating MCP-1/CCL2, IL-6 levels and activation of STAT-1, 3, 5, p38 and Akt cell signaling pathways. OSM induced synergistic action with IL-17A enhancing MCP-1/CCL-2 and IL-6 mRNA and protein expression, but not eotaxin-1 expression, while OSM in combination with IL-4 or IL-13 synergistically induced eotaxin-1 and MCP-1/CCL2. OSM elevated steady state mRNA levels of IL-4Rα, OSMRβ and gp130, but not IL-17RA or IL-17RC. Pharmacologic inhibition of STAT3 activation using Stattic down-regulated OSM, OSM/IL-4 or OSM/IL-13, and OSM/IL-17A synergistic responses of MCP-1/CCL-2 induction, whereas, inhibitors of Akt and p38 MAPK resulted in less reduction in MCP-1/CCL2 levels. IL-6 expression was more sensitive to inhibition of p38 (using SB203580) and was affected by Stattic in response to IL-17A/OSM stimulation. CONCLUSIONS Oncostatin M can regulate HASMC responses alone or in synergy with IL-17A. OSM/IL-17A combinations enhance MCP-1/CCL2 and IL-6 but not eotaxin-1. Thus, OSM through STAT3 activation of HASMC may participate in inflammatory cell recruitment in inflammatory airway disease.
منابع مشابه
Critical role for STAT3 in IL-17A-mediated CCL11 expression in human airway smooth muscle cells.
IL-17A has been shown to be expressed at higher levels in respiratory secretions from asthmatics and to correlate with airway hyperresponsiveness. Although these studies raise the possibility that IL-17A may influence allergic disease, the mechanism remains unknown. We previously demonstrated that IL-17A mediates CC chemokine (CCL11) production from human airway smooth muscle (ASM) cells. In th...
متن کاملIL-17A induces eotaxin-1/CC chemokine ligand 11 expression in human airway smooth muscle cells: role of MAPK (Erk1/2, JNK, and p38) pathways.
Recently, IL-17A has been shown to be expressed in higher levels in respiratory secretions from asthmatics and correlated with airway hyperresponsiveness. Although these studies raise the possibility that IL-17A may influence allergic disease, the mechanisms remain unknown. In this study, we investigated the molecular mechanisms involved in IL-17A-mediated CC chemokine (eotaxin-1/CCL11) product...
متن کاملThe Role of Interleukin (IL-22) in immune response to human diseases
Background and aims: IL-22 is an alpha- helical cytokine. IL-22 binds to a heterodimeric cell surface receptor composed of IL-10R2 and IL-22R1subunits. IL-22R is expressed on tissue cells, and it is absent on immune cells. L-22 and IL-10 receptor chains play a role in cellular targeting and signal transduction to selectively initiate and regulate immune responses. The aim of this study was to i...
متن کاملOncostatin M causes VEGF release from human airway smooth muscle: synergy with IL-1beta.
Vascular endothelial growth factor (VEGF), a potent angiogenesis factor, likely contributes to airway remodeling in asthma. We sought to examine the effects and mechanism of action of IL-6 family cytokines on VEGF release from human airway smooth muscle (HASM) cells. Oncostatin M (OSM), but not other IL-6 family cytokines, increased VEGF release, and IL-1beta enhanced OSM-induced VEGF release. ...
متن کاملOncostatin M Causes Vegf Release from Human Airway Smooth Muscle: Synergy with Il-1β
Vascular endothelial growth factor (VEGF), a potent angiogenesis factor, likely contributes to airway remodeling in asthma. We sought to examine the effects and mechanism of action of IL-6 family cytokines on VEGF release from human airway smooth muscle (HASM) cells. Oncostatin M (OSM), but not other IL-6 family cytokines, increased VEGF release and IL-1β enhanced OSM-induced VEGF release. OSM ...
متن کامل